The following are instructions required to compile an application that uses the FreeType 2 library.
Locate the FreeType 2 include directory.
You have to add it to your compilation include path.
In Unix-like environments you can run the freetype-config script with the --cflags option to retrieve the appropriate compilation flags. This script can also be used to check the version of the library that is installed on your system, as well as the required librarian and linker flags.
Include the file named ft2build.h.
It contains various macro declarations that are later used to #include the appropriate public FreeType 2 header files.
Include the main FreeType 2 API header file.
You should do that using the macro FT_FREETYPE_H, like in the following example.
#include <ft2build.h> #include FT_FREETYPE_H
FT_FREETYPE_H is a special macro defined in file ftheader.h. It contains some installation-specific macros to name other public header files of the FreeType 2 API.
You can read this section of the FreeType 2 API Reference for a complete listing of the header macros.
The use of macros in #include statements is ANSI-compliant. It is used for several reasons.
To initialize the FreeType library, create a variable of type FT_Library named, for example, library, and call the function FT_Init_FreeType.
#include <ft2build.h> #include FT_FREETYPE_H FT_Library library; ... error = FT_Init_FreeType( &library ); if ( error ) { ... an error occurred during library initialization ... }
This function is in charge of
As you can see, the function returns an error code, like most other functions of the FreeType API. An error code of 0 (also known as FT_Err_Ok) always means that the operation was successful; otherwise, the value describes the error, and library is set to NULL.
Create a new face object by calling FT_New_Face. A face describes a given typeface and style. For example, ‘Times New Roman Regular’ and ‘Times New Roman Italic’ correspond to two different faces.
FT_Library library; /* handle to library */ FT_Face face; /* handle to face object */ error = FT_Init_FreeType( &library ); if ( error ) { ... } error = FT_New_Face( library, "/usr/share/fonts/truetype/arial.ttf", 0, &face ); if ( error == FT_Err_Unknown_File_Format ) { ... the font file could be opened and read, but it appears ... that its font format is unsupported } else if ( error ) { ... another error code means that the font file could not ... be opened or read, or that it is broken... }
As you can certainly imagine, FT_New_Face opens a font file, then tries to extract one face from it. Its parameters are as follows.
Certain font formats allow several font faces to be embedded in a single file.
This index tells which face you want to load. An error is returned if its value is too large.
Index 0 always works, though.
A pointer to the handle that is set to describe the new face object.
It is set to NULL in case of error.
To know how many faces a given font file contains, load its first face (this is, face_index should be set to zero), then check the value of face->num_faces, which indicates how many faces are embedded in the font file.
In the case where you have already loaded the font file into memory, you can similarly create a new face object for it by calling FT_New_Memory_Face.
FT_Library library; /* handle to library */ FT_Face face; /* handle to face object */ error = FT_Init_FreeType( &library ); if ( error ) { ... } error = FT_New_Memory_Face( library, buffer, /* first byte in memory */ size, /* size in bytes */ 0, /* face_index */ &face ); if ( error ) { ... }
As you can see, FT_New_Memory_Face takes a pointer to the font file buffer and its size in bytes instead of a file pathname. Other than that, it has exactly the same semantics as FT_New_Face.
Note that you must not deallocate the memory before calling FT_Done_Face.
There are cases where using a file pathname or preloading the file into memory is not sufficient. With FreeType 2, it is possible to provide your own implementation of I/O routines.
This is done through the FT_Open_Face function, which can be used to open a new font face with a custom input stream, select a specific driver for opening, or even pass extra parameters to the font driver when creating the object. We advise you to look up the FreeType 2 reference manual in order to learn how to use it.
A face object models all information that globally describes the face. Usually, this data can be accessed directly by dereferencing a handle, like in face−>num_glyphs.
The complete list of available fields is in the FT_FaceRec structure description. However, we describe here a few of them in more detail.
A pointer to an array of FT_Bitmap_Size elements. Each FT_Bitmap_Size indicates the horizontal and vertical character pixel sizes for each of the strikes that are present in the face.
Note that, generally speaking, these are not the cell size of the bitmap strikes.
FreeType 2 uses size objects to model all information related to a given character size for a given face. For example, a size object holds the value of certain metrics like the ascender or text height, expressed in 1/64th of a pixel, for a character size of 12 points.
When the FT_New_Face function is called (or one of its siblings), it automatically creates a new size object for the returned face. This size object is directly accessible as face−>size.
NOTE: A single face object can deal with one or more size objects at a time; however, this is something that few programmers really need to do. We have thus decided to simplify the API for the most common use (i.e., one size per face) while keeping this feature available through additional functions.
When a new face object is created, all elements are set to 0 during initialization. To populate the structure with sensible values, you should call FT_Set_Char_Size. Here is an example, setting the character size to 16pt for a 300×300dpi device:
error = FT_Set_Char_Size( face, /* handle to face object */ 0, /* char_width in 1/64th of points */ 16*64, /* char_height in 1/64th of points */ 300, /* horizontal device resolution */ 300 ); /* vertical device resolution */
Some notes.
This function computes the character pixel size that corresponds to the character width and height and device resolutions. However, if you want to specify the pixel sizes yourself, you can call FT_Set_Pixel_Sizes.
error = FT_Set_Pixel_Sizes( face, /* handle to face object */ 0, /* pixel_width */ 16 ); /* pixel_height */
This example sets the character pixel sizes to 16×16 pixels. As previously, a value of 0 for one of the dimensions means ‘same as the other’.
Note that both functions return an error code. Usually, an error occurs with a fixed-size font format (like FNT or PCF) when trying to set the pixel size to a value that is not listed in the face->fixed_sizes array.
Normally, an application wants to load a glyph image based on its character code, which is a unique value that defines the character for a given encoding. For example, code 65 (0x41) represents character ‘A’ in ASCII encoding.
A face object contains one or more tables, called charmaps, to convert character codes to glyph indices. For example, most older TrueType fonts contain two charmaps: One is used to convert Unicode character codes to glyph indices, the other one is used to convert Apple Roman encoding to glyph indices. Such fonts can then be used either on Windows (which uses Unicode) and old MacOS versions (which use Apple Roman). Note also that a given charmap might not map to all the glyphs present in the font.
By default, when a new face object is created, it selects a Unicode charmap. FreeType tries to emulate a Unicode charmap if the font doesn't contain such a charmap, based on glyph names. Note that it is possible that the emulation misses glyphs if glyph names are non-standard. For some fonts like symbol fonts, no Unicode emulation is possible at all.
Later on we will describe how to look for specific charmaps in a face. For now, we assume that the face contains at least a Unicode charmap that was selected during a call to FT_New_Face. To convert a Unicode character code to a font glyph index, we use FT_Get_Char_Index.
glyph_index = FT_Get_Char_Index( face, charcode );
This code line looks up the glyph index corresponding to the given charcode in the charmap that is currently selected for the face. You should use the UTF-32 representation form of Unicode; for example, if you want to load character U+1F028, use value 0x1F028 as the value for charcode.
If no charmap was selected, the function returns the charcode.
Note that this is one of the rare FreeType functions that do not return an error code. However, when a given character code has no glyph image in the face, value 0 is returned. By convention, it always corresponds to a special glyph image called the missing glyph, which is commonly displayed as a box or a space.
Once you have a glyph index, you can load the corresponding glyph image. The latter can be stored in various formats within the font file. For fixed-size formats like FNT or PCF, each image is a bitmap. Scalable formats like TrueType or CFF use vectorial shapes (outlines) to describe each glyph. Some formats may have even more exotic ways of representing glyphs (e.g., MetaFont – but this format is not supported). Fortunately, FreeType 2 is flexible enough to support any kind of glyph format through a simple API.
The glyph image is always stored in a special object called a glyph slot. As its name suggests, a glyph slot is a container that is able to hold one glyph image at a time, be it a bitmap, an outline, or something else. Each face object has a single glyph slot object that can be accessed as face->glyph. Its fields are explained by the FT_GlyphSlotRec structure documentation.
Loading a glyph image into the slot is performed by calling FT_Load_Glyph.
error = FT_Load_Glyph( face, /* handle to face object */ glyph_index, /* glyph index */ load_flags ); /* load flags, see below */
The load_flags value is a set of bit flags to indicate some special operations. The default value FT_LOAD_DEFAULT is 0.
This function tries to load the corresponding glyph image from the face.
The field face−>glyph−>format describes the format used for storing the glyph image in the slot. If it is not FT_GLYPH_FORMAT_BITMAP, one can immediately convert it to a bitmap through FT_Render_Glyph.
error = FT_Render_Glyph( face->glyph, /* glyph slot */ render_mode ); /* render mode */
The parameter render_mode is a set of bit flags to specify how to render the glyph image. FT_RENDER_MODE_NORMAL, the default, renders an anti-aliased bitmap with 256 gray levels (also called a pixmap), as this is the default. You can alternatively use FT_RENDER_MODE_MONO if you want to generate a 1-bit monochrome bitmap. More values are available for the FT_Render_Mode enumeration value.
Once you have a bitmapped glyph image, you can access it directly through glyph->bitmap (a simple descriptor for bitmaps or pixmaps), and position it through glyph->bitmap_left and glyph->bitmap_top.
Note that bitmap_left is the horizontal distance from the current pen position to the leftmost border of the glyph bitmap, while bitmap_top is the vertical distance from the pen position (on the baseline) to the topmost border of the glyph bitmap. It is positive to indicate an upwards distance.
As said before, when a new face object is created, it looks for a Unicode charmap and select it. The currently selected charmap can be accessed via face->charmap. This field is NULL if no charmap is selected, which typically happens when you create a new FT_Face object from a font file that doesn't contain a Unicode charmap (which is rather infrequent today).
There are two ways to select a different charmap with FreeType. It's easiest if the encoding you need already has a corresponding enumeration defined in FT_FREETYPE_H, for example FT_ENCODING_BIG5. In this case, you can call FT_Select_Charmap.
error = FT_Select_Charmap( face, /* target face object */ FT_ENCODING_BIG5 ); /* encoding */
Another way is to manually parse the list of charmaps for the face; this is accessible through the fields num_charmaps and charmaps (notice the ‘s’) of the face object. As you could expect, the first is the number of charmaps in the face, while the second is a table of pointers to the charmaps embedded in the face.
Each charmap has a few visible fields to describe it more precisely. The most important ones are charmap->platform_id and charmap->encoding_id, defining a pair of values that describe the charmap in a rather generic way: Each value pair corresponds to a given encoding. For example, the pair (3,1) corresponds to Unicode. The list is defined in the TrueType specification; you can also use the file FT_TRUETYPE_IDS_H, which defines several helpful constants to deal with them.
To select a specific encoding, you need to find a corresponding value pair in the specification, then look for it in the charmaps list. Don't forget that there are encodings that correspond to several value pairs due to historical reasons.
FT_CharMap found = 0;
FT_CharMap charmap;
int n;
for ( n = 0; n < face->num_charmaps; n++ )
{
charmap = face->charmaps[n];
if ( charmap->platform_id == my_platform_id &&
charmap->encoding_id == my_encoding_id )
{
found = charmap;
break;
}
}
if ( !found ) { ... }
/* now, select the charmap for the face object */
error = FT_Set_Charmap( face, found );
if ( error ) { ... }
Once a charmap has been selected, either through FT_Select_Charmap or FT_Set_Charmap, it is used by all subsequent calls to FT_Get_Char_Index.
It is possible to specify an affine transformation with FT_Set_Transform, to be applied to glyph images when they are loaded. Of course, this only works for scalable (vectorial) font formats.
error = FT_Set_Transform( face, /* target face object */ &matrix, /* pointer to 2x2 matrix */ &delta ); /* pointer to 2d vector */
This function sets the current transformation for a given face object. Its second parameter is a pointer to an FT_Matrix structure that describes a 2×2 affine matrix. The third parameter is a pointer to an FT_Vector structure, describing a two-dimensional vector that translates the glyph image after the 2×2 transformation.
Note that the matrix pointer can be set to NULL, in which case the identity transformation is used. Coefficients of the matrix are otherwise in 16.16 fixed-point units.
The vector pointer can also be set to NULL (in which case a delta of (0,0) is used). The vector coordinates are expressed in 1/64th of a pixel (also known as 26.6 fixed-point numbers).
The transformation is applied to every glyph that is loaded through FT_Load_Glyph and is completely independent of any hinting process. This means that you won't get the same results if you load a glyph at the size of 24 pixels, or a glyph at the size of 12 pixels scaled by 2 through a transformation, because the hints are computed differently (except if you have disabled hints).
If you ever need to use a non-orthogonal transformation with optimal hints, you first have to decompose your transformation into a scaling part and a rotation/shearing part. Use the scaling part to compute a new character pixel size, then the other one to call FT_Set_Transform. This is explained in more detail in part II of this tutorial.
Rotation usually disables hinting.
Loading a glyph bitmap with a non-identity transformation works; the transformation is ignored in this case.
We now present a simple example to render a string of 8-bit Latin-1 text, assuming a face that contains a Unicode charmap.
The idea is to create a loop that loads one glyph image on each iteration, converts it to a pixmap, draws it on the target surface, then increments the current pen position.
The following code performs our simple text rendering with the functions previously described.
FT_GlyphSlot slot = face->glyph; /* a small shortcut */ int pen_x, pen_y, n; ... initialize library ... ... create face object ... ... set character size ... pen_x = 300; pen_y = 200; for ( n = 0; n < num_chars; n++ ) { FT_UInt glyph_index; /* retrieve glyph index from character code */ glyph_index = FT_Get_Char_Index( face, text[n] ); /* load glyph image into the slot (erase previous one) */ error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT ); if ( error ) continue; /* ignore errors */ /* convert to an anti-aliased bitmap */ error = FT_Render_Glyph( face->glyph, FT_RENDER_MODE_NORMAL ); if ( error ) continue; /* now, draw to our target surface */ my_draw_bitmap( &slot->bitmap, pen_x + slot->bitmap_left, pen_y - slot->bitmap_top ); /* increment pen position */ pen_x += slot->advance.x >> 6; pen_y += slot->advance.y >> 6; /* not useful for now */ }
This code needs a few explanations.
The following code is a refined version of the example above. It uses features and functions of FreeType that have not yet been introduced, and which are explained below.
FT_GlyphSlot slot = face->glyph; /* a small shortcut */ FT_UInt glyph_index; int pen_x, pen_y, n; ... initialize library ... ... create face object ... ... set character size ... pen_x = 300; pen_y = 200; for ( n = 0; n < num_chars; n++ ) { /* load glyph image into the slot (erase previous one) */ error = FT_Load_Char( face, text[n], FT_LOAD_RENDER ); if ( error ) continue; /* ignore errors */ /* now, draw to our target surface */ my_draw_bitmap( &slot->bitmap, pen_x + slot->bitmap_left, pen_y - slot->bitmap_top ); /* increment pen position */ pen_x += slot->advance.x >> 6; }
We have reduced the size of our code, but it does exactly the same thing.
We do not use FT_LOAD_DEFAULT for the loading mode, but the bit flag FT_LOAD_RENDER. It indicates that the glyph image must be immediately converted to an anti-aliased bitmap. This is of course a shortcut that avoids calling FT_Render_Glyph explicitly but is strictly equivalent.
Note that you can also specify that you want a monochrome bitmap instead by using the additional FT_LOAD_MONOCHROME load flag.
Let us try to render transformed text now (for example through a rotation). We can do this using FT_Set_Transform.
FT_GlyphSlot slot; FT_Matrix matrix; /* transformation matrix */ FT_UInt glyph_index; FT_Vector pen; /* untransformed origin */ int n; ... initialize library ... ... create face object ... ... set character size ... slot = face->glyph; /* a small shortcut */ /* set up matrix */ matrix.xx = (FT_Fixed)( cos( angle ) * 0x10000L ); matrix.xy = (FT_Fixed)(-sin( angle ) * 0x10000L ); matrix.yx = (FT_Fixed)( sin( angle ) * 0x10000L ); matrix.yy = (FT_Fixed)( cos( angle ) * 0x10000L ); /* the pen position in 26.6 cartesian space coordinates */ /* start at (300,200) */ pen.x = 300 * 64; pen.y = ( my_target_height - 200 ) * 64; for ( n = 0; n < num_chars; n++ ) { /* set transformation */ FT_Set_Transform( face, &matrix, &pen ); /* load glyph image into the slot (erase previous one) */ error = FT_Load_Char( face, text[n], FT_LOAD_RENDER ); if ( error ) continue; /* ignore errors */ /* now, draw to our target surface (convert position) */ my_draw_bitmap( &slot->bitmap, slot->bitmap_left, my_target_height - slot->bitmap_top ); /* increment pen position */ pen.x += slot->advance.x; pen.y += slot->advance.y; }
Some remarks.
A complete source code example can be found here.
It is important to note that, while this example is a bit more complex than the previous one, it is strictly equivalent for the case where the transformation is the identity. Hence it can be used as a replacement (but a more powerful one).
The still present few shortcomings will be explained, and solved, in the next part of this tutorial.
Last update: 10-Dec-2014